z-logo
open-access-imgOpen Access
Fast Crystallization-Deposition of Orderly Molecule Level Heterojunction Thin Films Showing Tunable Up-Conversion and Ultrahigh Photoelectric Response
Author(s) -
XiaoGang Yang,
Zhi-Min Zhai,
Xiao-Min Lu,
LuFang Ma,
Dongpeng Yan
Publication year - 2020
Publication title -
acs central science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.893
H-Index - 76
eISSN - 2374-7951
pISSN - 2374-7943
DOI - 10.1021/acscentsci.0c00447
Subject(s) - cocrystal , materials science , thin film , photocurrent , heterojunction , optoelectronics , organic semiconductor , luminescence , organic electronics , acceptor , molecule , crystallization , photoconductivity , nanotechnology , chemistry , organic chemistry , transistor , hydrogen bond , physics , quantum mechanics , voltage , condensed matter physics
Molecular cocrystals have received much attention for tuning physicochemical properties in pharmaceutics, luminescence, organic electronics, and so on. However, the effective methods for the formation of orderly cocrystal thin films are still rather limited, which have largely restricted their photofunctional and optoelectronic applications. In this work, a fast crystallization-deposition procedure is put forward to obtain acridine (AD)-based cocrystals, which are self-assembled with three typical isophthalic acid derivatives (IPA, IPB, and TMA). The obtained donor-acceptor cocrystal complexes exhibit an adjustable energy level, wide range of photoluminescence color, and rotational angle-dependent polarized emission. The orderly and uniform cocrystal thin films further present tunable one-/two-photon up-conversion and different semiconductor properties. Particularly, AD-TMA cocrystal thin film shows a rare example of a molecule level heterojunction with the alternating arrangement of AD electronic acceptor layers and TMA electronic donor layers, and thus, provides a way for efficient mobility and separation of electron-hole pairs. A large on-off photocurrent ratio of more than 10 4 can be achieved for the AD-TMA thin film, which is higher than state-of-the-art molecular semiconductor systems. Therefore, this work extends the application scopes of orderly cocrystal thin film materials for future luminescent and optoelectronic micro-/nanodevices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom