z-logo
open-access-imgOpen Access
A Parsimonious Mechanism of Sugar Dehydration by Human GDP-Mannose-4,6-dehydratase
Author(s) -
Martin Pfeiffer,
C. Johansson,
T. Krojer,
K.L. Kavanagh,
Udo Oppermann,
Bernd Nidetzky
Publication year - 2019
Publication title -
acs catalysis
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.898
H-Index - 198
ISSN - 2155-5435
DOI - 10.1021/acscatal.9b00064
Subject(s) - dehydratase , chemistry , mannose , stereochemistry , active site , biochemistry , enzyme
Biosynthesis of 6-deoxy sugars, including l-fucose, involves a mechanistically complex, enzymatic 4,6-dehydration of hexose nucleotide precursors as the first committed step. Here, we determined pre- and postcatalytic complex structures of the human GDP-mannose 4,6-dehydratase at atomic resolution. These structures together with results of molecular dynamics simulation and biochemical characterization of wildtype and mutant enzymes reveal elusive mechanistic details of water elimination from GDP-mannose C5″ and C6″, coupled to NADP-mediated hydride transfer from C4″ to C6″. We show that concerted acid-base catalysis from only two active-site groups, Tyr 179 and Glu 157 , promotes a syn 1,4-elimination from an enol (not an enolate) intermediate. We also show that the overall multistep catalytic reaction involves the fewest position changes of enzyme and substrate groups and that it proceeds under conserved exploitation of the basic (minimal) catalytic machinery of short-chain dehydrogenase/reductases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom