z-logo
open-access-imgOpen Access
Effect of High- and Low-Molecular-Weight Hyaluronic-Acid-Functionalized-AZ31 Mg and Ti Alloys on Proliferation and Differentiation of Osteoblast Cells
Author(s) -
Sankalp Agarwal,
Brendan Duffy,
James F. Curtin,
Swarna Jaiswal
Publication year - 2018
Publication title -
acs biomaterials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.082
H-Index - 50
ISSN - 2373-9878
DOI - 10.1021/acsbiomaterials.8b00968
Subject(s) - hyaluronic acid , osteoblast , extracellular matrix , adhesion , materials science , chemistry , biochemistry , in vitro , biology , anatomy , organic chemistry
The quality of patient care has increased dramatically in recent years because of the development of lightweight orthopedic metal implants. The success of these orthopedic implants may be compromised by impaired cytocompatibility and osteointegration. Biomimetic surface engineering of metal implants using biomacromolecules including hyaluronic acid (HA) has been used an effective approach to provide conditions favorable for the growth of bone forming cells. To date, there have been limited studies on osteoblasts functions in response to metal substrates modified with the hyaluronic acid of different molecular weight for orthopedic applications. In this study, we evaluated the osteoblasts functions such as adhesion, proliferation, and differentiation in response to high- and low-molecular-weight HA (denoted as h-HA and l-HA, respectively) functionalized on Ti (h-HA-Ti and l-HA-Ti substrates, respectively) and corrosion-resistant silane coated-AZ31 Mg alloys (h-HA-AZ31 and l-HA-AZ31). The DNA quantification study showed that adhesion and proliferation of osteoblasts were significantly decreased by h-HA immobilized on Ti or AZ31 substrates when compared to low-molecular-weight counterpart over a period of 14 days. On the contrary, h-HA significantly increased the osteogenic differentiation of osteoblast over l-HA, as confirmed by the enhanced expression of ALP, total collagen, and mineralization of extracellular matrix. In particular, the h-HA-AZ31 substrates greatly enhanced the osteoblast differentiation among tested samples (l-HA-AZ31, l-HA-Ti, h-HA-Ti, and Ti alone), which is ascribed to the osteoinductive activity of h-HA, relatively up-regulated intracellular Ca 2+ ([Ca 2+ ] i ) and Mg 2+ ([Mg 2+ ] i ) concentrations as well as the alkalization of the cell culture medium. This study suggesting that HA of appropriate molecular weight can be successfully used to modify the surface of metal implants for orthopedic applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom