
Orthopedic Interface Repair Strategies Based on Native Structural and Mechanical Features of the Multiscale Enthesis
Author(s) -
Ryan C. Locke,
Adam C. Abraham,
Megan L. Killian
Publication year - 2016
Publication title -
acs biomaterials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.082
H-Index - 50
ISSN - 2373-9878
DOI - 10.1021/acsbiomaterials.6b00599
Subject(s) - enthesis , fibrocartilage , rotator cuff , materials science , tendon , soft tissue , ligament , biomedical engineering , medicine , anatomy , osteoarthritis , surgery , articular cartilage , alternative medicine , pathology
The enthesis is an organ that connects a soft, aligned tissue (tendon/ligament) to a hard, amorphous tissue (bone) via a fibrocartilage interface. Mechanically, the enthesis sustains a dynamic loading environment that includes tensile, compressive, and shear forces. The structural components of the enthesis act to minimize stress concentrations and control stretch at the interface. Current surgical repair of the enthesis, such as in rotator cuff repair and anterior cruciate ligament reconstruction, aim to bridge the gap between the injured ends via reattachment of soft-to-hard tissues or graft replacement. In this review, we discuss the multiscale, morphological, and mechanical characteristics of the fibrocartilage attachment. Additionally, we review historical and recent clinical approaches to treating enthesis injury. Lastly, we explore new technological advancements in tissue-engineered biomaterials that have shown promise in preclinical studies.