Silver Nanoparticle-Decorated Personal Protective Equipment for Inhibiting Human Coronavirus Infectivity
Author(s) -
Mutalifu Abulikemu,
Bita E. A. Tabrizi,
Shahrokh M. Ghobadloo,
Hamed Mohammadi Mofarah,
Ghassan E. Jabbour
Publication year - 2021
Publication title -
acs applied nano materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.227
H-Index - 29
ISSN - 2574-0970
DOI - 10.1021/acsanm.1c03033
Subject(s) - covid-19 , coronavirus , face masks , infectivity , virus , personal protective equipment , virology , silver nanoparticle , outbreak , nanotechnology , materials science , nanoparticle , medicine , disease , infectious disease (medical specialty) , pathology
The Coronavirus disease 2019 (COVID-19) global outbreak and its continued growth and mutation into various forms emphasize the need for effective disinfectants to assist in the reduction of the virus's spread from individual to individuals and community to communities through various modes, including coughing, sneezing, touching of contaminated surfaces, and being in proximity of an unprotected infected person, to mention a few. The rapid development of reliable disinfecting materials or solutions and their incorporation in personal protective equipment is a critical need at the moment that will assist significantly in curbing the spread of the virus SARS-CoV-2, the cause of COVID-19 illness. Here, we present an in situ assembly of antiviral metal nanoparticles on a rigid surface and on commercial face masks made up of nonwoven and woven textiles. The results indicate a very high efficacy of 99.99% against a surrogate virus to SARS-CoV-2. Such a versatile and cost-effective approach using the blade-coating technique can be easily extended to the roll-to-roll manufacturing setting to expedite the efforts and mitigate the rapid spread of the virus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom