z-logo
open-access-imgOpen Access
Controlling Catalyst-Phase Selectivity in Complex Mixtures with Amphiphilic Janus Particles
Author(s) -
Benjamin Greydanus,
Daniel K. Schwartz,
J. Will Medlin
Publication year - 2019
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.9b16957
Subject(s) - catalysis , materials science , janus particles , janus , hydrodeoxygenation , benzyl alcohol , selectivity , amphiphile , chemical engineering , phase (matter) , organic chemistry , nanoparticle , nanotechnology , chemistry , copolymer , polymer , engineering , composite material
Amphiphilic Janus particles with a catalyst selectively loaded on either the hydrophobic or hydrophilic region are promising candidates for efficient and phase-selective interfacial catalysis. Here, we report the synthesis and characterization of Janus silica particles with a hydrophilic silica domain and a silane-modified hydrophobic domain produced via a wax masking technique. Palladium nanoparticles were regioselectively deposited on the hydrophobic side, and the phase selectivity of the catalytic Janus particles was established through the kinetic studies of benzyl alcohol hydrodeoxygenation (HDO). These studies indicated that the hydrophobic moiety provided nearly 100× the catalytic activity as the hydrophilic side for benzyl alcohol HDO. The reactivity was linked to the anisotropic catalyst design through microscopy of the particles. The catalysts were also used to achieve phase-specific compartmentalized hydrogenation and selective in situ catalytic degradation of a model oily pollutant in a complex oil/water mixture.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom