
Significant Suppression of Staphylococcus aureus Colonization on Intramedullary Ti6Al4V Implants Surface-Grafted with Vancomycin-Bearing Polymer Brushes
Author(s) -
Ben Zhang,
Benjamin Braun,
Jordan D. Skelly,
David C. Ayers,
Jie Song
Publication year - 2019
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.9b07648
Subject(s) - materials science , biofilm , staphylococcus aureus , microbiology and biotechnology , vancomycin , bacteria , biology , genetics
Orthopedic implant-associated bacterial infection presents a major health threat due to tendency for periprosthetic bacterial colonization/biofilm formation that protects bacteria from host immune response and conventional antibiotic treatment. Using surface-initiated atom transfer radical polymerization and copper-catalyzed azide-alkyne cycloaddition (CuAAC), alkynylated vancomycin is conjugated to azido-functionalized side chains of polymethacrylates grafted from Ti6Al4V. High-efficiency CuAAC across the substrate is confirmed by complete surface conversion of azides by X-ray photoelectron spectroscopy (XPS) and elemental mapping of changing characteristic elements. The vancomycin-modified surface (Ti-pVAN) significantly reduces in vitro adhesion and colonization of Staphylococcus aureus ( S. aureus ) , a main bacterial pathogen responsible for periprosthetic infection and osteomyelitis, compared to untreated Ti6Al4V, supporting retained antibacterial properties of the covalently conjugated antibiotics. When the surface-modified intramedullary Ti-pVAN pins are inserted into mouse femoral canals infected by bioluminescent Xen29 S. aureus , significantly reduced local bioluminescence along with mitigated blood markers for infection are detected compared to untreated Ti6Al4V pins over 21 days. Ti-pVAN pins retrieved after 21 days are confirmed with ∼20-fold reduction in adherent bacteria counts compared to untreated control, supporting the ability of surface-conjugated vancomycin in inhibiting periprosthetic S. aureus adhesion and colonization.