z-logo
open-access-imgOpen Access
An Immuno-Biochip Selectively Captures Tumor-Derived Exosomes and Detects Exosomal RNAs for Cancer Diagnosis
Author(s) -
Yunchen Yang,
Eric Kannisto,
Yu Guan,
Mary E. Reid,
Santosh K. Patnaik,
Yun Wu
Publication year - 2018
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.8b13971
Subject(s) - microvesicles , biochip , lung cancer , cancer research , microrna , metastasis , biology , cancer biomarkers , microbiology and biotechnology , angiogenesis , multiplex , exosome , cancer , medicine , bioinformatics , pathology , biochemistry , gene , genetics
Tumor-derived exosomes (TEXs) play instrumental roles in tumor growth, angiogenesis, immune modulation, metastasis, and drug resistance. TEX RNAs are a new class of noninvasive biomarkers for cancer. Neither current techniques, such as quantitative reverse transcription polymerase chain reaction (qRT-PCR) and next-generation sequencing, nor new ones, such as electrochemical or surface plasmon resonance-based biosensors, are able to selectively capture and separate TEXs from normal cell-derived exosomes, making TEX RNAs potentially less sensitive biomarkers. We developed an immuno-biochip that selectively captures TEXs using antibodies against tumor-associated proteins and quantifies in situ TEX RNAs using cationic lipoplexes containing molecular beacons. We used the immuno-biochip to measure the expression of miR-21 microRNA and TTF-1 mRNA in EGFR- or PD-L1-bearing exosomes from human sera and achieved absolute sensitivity and specificity in distinguishing normal controls from non-small cell lung cancer patients. Our results demonstrated that the effective separation of TEXs from other exosomes greatly improved the detection sensitivity and specificity. Compared with the traditional immunomagnetic separation-RNA isolation-qRT-PCR workflow, the immuno-biochip showed superior lung cancer diagnostic performance, consumed less samples (∼30 μL), and shortened assay time from ∼24 to 4 h.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom