z-logo
open-access-imgOpen Access
Cobalt Phosphate Nanostructures for Non-Enzymatic Glucose Sensing at Physiological pH
Author(s) -
Pietro Pacchin Tomanin,
Pavel V. Cherepanov,
Quinn A. Besford,
Andrew J. Christofferson,
Alessia Amodio,
C. F. McConville,
Irene Yarovsky,
Frank Caruso,
Francesca Cavalieri
Publication year - 2018
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.8b12966
Subject(s) - chronoamperometry , ascorbic acid , cobalt , materials science , detection limit , cyclic voltammetry , electrochemistry , catalysis , biosensor , nanostructure , amperometry , phosphate , nanotechnology , inorganic chemistry , electrode , chemistry , biochemistry , chromatography , food science
Nanostructured materials have potential as platforms for analytical assays and catalytic reactions. Herein, we report the synthesis of electrocatalytically active cobalt phosphate nanostructures (CPNs) using a simple, low-cost, and scalable preparation method. The electrocatalytic properties of CPNs toward the electrooxidation of glucose (Glu) were studied by cyclic voltammetry and chronoamperometry in relevant biological electrolytes, such as phosphate-buffered saline (PBS), at physiological pH (7.4). Using CPNs, Glu detection could be achieved over a wide range of biologically relevant concentrations, from 1 to 30 mM Glu in PBS, with a sensitivity of 7.90 nA/mM cm 2 and a limit of detection of 0.3 mM, thus fulfilling the necessary requirements for human blood Glu detection. In addition, CPNs showed a high structural and functional stability over time at physiological pH. The CPN-coated electrodes could also be used for Glu detection in the presence of interfering agents (e.g., ascorbic acid and dopamine) and in human serum. Density functional theory calculations were performed to evaluate the interaction of Glu with different faceted cobalt phosphate surfaces; the results revealed that specific surface presentations of under-coordinated cobalt led to the strongest interaction with Glu, suggesting that enhanced detection of Glu by CPNs can be achieved by lowering the surface coordination of cobalt. Our results highlight the potential use of phosphate-based nanostructures as catalysts for electrochemical sensing of biochemical analytes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom