High-Rate and Long-Term Cycle Stability of Li–S Batteries Enabled by Li2S/TiO2-Impregnated Hollow Carbon Nanofiber Cathodes
Author(s) -
Xinran Wang,
Xuanxuan Bi,
Shaona Wang,
Yi Zhang,
Hao Du,
Jun Lü
Publication year - 2018
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.8b03201
Subject(s) - materials science , cathode , nanofiber , carbon nanofiber , chemical engineering , carbon fibers , term (time) , composite material , nanotechnology , carbon nanotube , chemistry , composite number , engineering , physics , quantum mechanics
The high theoretical energy density of lithium-sulfur (Li-S) batteries makes them an alternative battery technology to lithium ion batteries. However, Li-S batteries suffer from low sulfur loading, poor charge transport, and dissolution of lithium polysulfide. In our study, we use the lithiated S, Li 2 S, as the cathode material, coupled with electrospun TiO 2 -impregnated hollow carbon nanofibers (TiO 2 -HCFs), which serve as the conductive agent and protective barrier for Li 2 S in Li-S batteries. TiO 2 -HCFs provide much improved electron/ionic conductivity and serve as a physical barrier, which prevents the dissolution of lithium polysulfides. The Li 2 S/TiO 2 -HCF composite delivers a discharge capacity of 851 mA h g Li 2 S -1 at 0.1C and the bilayer TiO 2 -HCFs/Li 2 S/TiO 2 -HCF composite delivers a high specific capacity of 400 mA h g Li 2 S -1 at 5C.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom