z-logo
open-access-imgOpen Access
DNA-Guided Delivery of Single Molecules into Zero-Mode Waveguides
Author(s) -
Thomas Plénat,
Satoko Yoshizawa,
Dominique Fourmy
Publication year - 2017
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.7b11953
Subject(s) - biomolecule , materials science , molecule , dna , single molecule experiment , massively parallel , nanotechnology , macromolecule , chemical physics , biophysics , molecular physics , physics , computer science , chemistry , parallel computing , biochemistry , quantum mechanics , biology
Zero-mode waveguides (ZMWs) are powerful analytical tools corresponding to optical nanostructures fabricated in a thin metallic film capable of confining an excitation volume to the range of attoliters. This small volume of confinement allows single-molecule fluorescence experiments to be performed at physiologically relevant concentrations of fluorescently labeled biomolecules. Exactly one molecule to be studied must be attached at the floor of the ZMW for signal detection and analysis; however, the massive parallelism of these nanoarrays suffers from a Poissonian-limited distribution of these biomolecules. To date, there is no method available that provides full single-molecule occupancy of massively arrayed ZMWs. Here we report the performance of a DNA-guided method that uses steric exclusion properties of large DNA molecules to bias the Poissonian-limited delivery of single molecules. Non-Poissonian statistics were obtained with DNA molecules that contain a free-biotinylated extremity for efficient binding to the floor of the ZMW, which resulted in a decrease of accessibility for a second molecule. Both random-coiled and condensed DNA conformations drove non-Poissonian single-molecule delivery into ZMW arrays. The results suggest that an optimal balance between the rigidity and flexibility of the macromolecule is critical for favorable accessibility and single occupancy. The optimized method provides a means for full exploitation of these massively parallelized analytical tools.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom