z-logo
open-access-imgOpen Access
Graphene–Titanium Interfaces from Molecular Dynamics Simulations
Author(s) -
Alexandre F. Fonseca,
Tao Liang,
Difan Zhang,
Kamal Choudhary,
Simon R. Phillpot,
Susan B. Sinnott
Publication year - 2017
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.7b09469
Subject(s) - materials science , molecular dynamics , titanium , graphene , nanotechnology , dynamics (music) , chemical physics , computational chemistry , metallurgy , chemistry , physics , acoustics
Unraveling the physical and chemical properties of graphene-metal contacts is a key step toward the development of graphitic electronic nanodevices. Although many studies have revealed the way that various metals interact with graphene, few have described the structure and behavior of large pieces of graphene-metal nanostructures under different conditions. Here, we present the first classical molecular dynamics study of graphene-titanium (G-Ti) structures, with and without substrates. Physical and chemical properties of equilibrium structures of G-Ti interfaces with different amounts of titanium coverage are investigated. Adhesion of Ti films on graphene is shown to be enhanced by the vacancies in graphene or the electrostatic influence of substrates. The dynamics of pristine G-Ti structures at different temperatures on planar and nonplanar substrates are investigated, and the results show that G-Ti interfaces are thermally stable, that is, not prone to any reaction toward the formation of titanium carbide.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom