z-logo
open-access-imgOpen Access
Electronic Structure and Band Alignment at the NiO and SrTiO3 p–n Heterojunctions
Author(s) -
Kelvin H. L. Zhang,
Rui Wu,
Fengzai Tang,
Weiwei Li,
F. Palacio,
Liang Qiao,
Vlado K. Lazarov,
Yingge Du,
David J. Payne,
Judith L. MacManusDriscoll,
M. G. Blamire
Publication year - 2017
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.7b06025
Subject(s) - materials science , heterojunction , non blocking i/o , electronic structure , electronic band structure , optoelectronics , condensed matter physics , engineering physics , nanotechnology , physics , biochemistry , chemistry , catalysis
Understanding the energetics at the interface, including the alignment of valence and conduction bands, built-in potentials, and ionic and electronic reconstructions, is an important challenge in designing oxide interfaces that have controllable multifunctionalities for novel (opto-)electronic devices. In this work, we report detailed investigations on the heterointerface of wide-band-gap p-type NiO and n-type SrTiO 3 (STO). We show that despite a large lattice mismatch (∼7%) and dissimilar crystal structure, high-quality NiO and Li-doped NiO (LNO) thin films can be epitaxially grown on STO(001) substrates through a domain-matching epitaxy mechanism. X-ray photoelectron spectroscopy studies indicate that NiO/STO heterojunctions form a type II "staggered" band alignment. In addition, a large built-in potential of up to 0.97 eV was observed at the interface of LNO and Nb-doped STO (NbSTO). The LNO/NbSTO p-n heterojunctions exhibit not only a large rectification ratio of 2 × 10 3 but also a large ideality factor of 4.3. The NiO/STO p-n heterojunctions have important implications for applications in photocatalysis and photodetectors as the interface provides favorable energetics for facile separation and transport of photogenerated electrons and holes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom