z-logo
open-access-imgOpen Access
Two-Dimensional Cadmium Chloride Nanosheets in Cadmium Telluride Solar Cells
Author(s) -
Craig L. Perkins,
Carolyn Beall,
Matthew O. Reese,
Teresa M. Barnes
Publication year - 2017
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.7b03671
Subject(s) - materials science , cadmium telluride photovoltaics , cadmium , cadmium chloride , cadmium sulfide , nanotechnology , inorganic chemistry , chemical engineering , metallurgy , engineering , chemistry
In this study we make use of a liquid nitrogen-based thermomechanical cleavage technique and a surface analysis cluster tool to probe in detail the tin oxide/emitter interface at the front of completed CdTe solar cells. We show that this thermomechanical cleavage occurs within a few angstroms of the SnO 2 /emitter interface. An unexpectedly high concentration of chlorine at this interface, ∼20%, was determined from a calculation that assumed a uniform chlorine distribution. Angle-resolved X-ray photoelectron spectroscopy was used to further probe the structure of the chlorine-containing layer, revealing that both sides of the cleave location are covered by one-third of a unit cell of pure CdCl 2 , a thickness corresponding to about one Cl-Cd-Cl molecular layer. We interpret this result in the context of CdCl 2 being a true layered material similar to transition-metal dichalcogenides. Exposing cleaved surfaces to water shows that this Cl-Cd-Cl trilayer is soluble, raising questions pertinent to cell reliability. Our work provides new and unanticipated details about the structure and chemistry of front surface interfaces and should prove important to improving materials, processes, and reliability of next-generation CdTe-based solar cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom