z-logo
open-access-imgOpen Access
Photoelectrochemical Carbon Dioxide Reduction Using a Nanoporous Ag Cathode
Author(s) -
Yan Zhang,
Wesley Luc,
Gregory S. Hutchings,
Feng Jiao
Publication year - 2016
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.6b09095
Subject(s) - materials science , nanoporous , cathode , carbon dioxide , electrochemical reduction of carbon dioxide , reduction (mathematics) , carbon fibers , nanotechnology , chemical engineering , composite material , carbon monoxide , catalysis , organic chemistry , chemistry , engineering , geometry , mathematics , composite number
Solar fuel production from abundant sources using photoelectrochemical (PEC) systems is an attractive approach to address the challenges associated with the intermittence of solar energy. In comparison to electrochemical systems, PEC cells directly utilize solar energy as the energy input, and if necessary, then an additional external bias can be applied to drive the desired reaction. In this work, a PEC cell composing of a Ni-coated Si photoanode and a nanoporous Ag cathode was developed for CO2 conversion to CO. The thin Ni layer not only protected the Si wafer from photocorrosion but also served as the oxygen evolution catalyst. At an external bias of 2.0 V, the PEC cell delivered a current density of 10 mA cm(-2) with a CO Faradaic efficiency of ∼70%. More importantly, a stable performance up to 3 h was achieved under photoelectrolysis conditions, which is among the best literature-reported performances for PEC CO2 reduction cells. The photovoltage of the PEC cell was estimated to be ∼0.4 V, which corresponded to a 17% energy saving by solar energy utilization. Postreaction structural analysis showed the corrosion of the Ni layer at the Si photoanode/catalyst interface, which caused performance degradation under prolonged operations. A stable oxygen evolution catalyst with a robust interface is crucial to the long-term stability of PEC CO2 reduction cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom