Effects of Carbon Content on the Electrochemical Performances of MoS2–C Nanocomposites for Li-Ion Batteries
Author(s) -
Weiyi Sun,
Zhe Hu,
Caiyun Wang,
Zhanliang Tao,
Shulei Chou,
YongMook Kang,
Huan Liu
Publication year - 2016
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.6b05594
Subject(s) - materials science , nanocomposite , electrochemistry , ion , carbon fibers , nanoarchitectures for lithium ion batteries , nanotechnology , chemical engineering , composite material , electrode , composite number , organic chemistry , chemistry , engineering
Molybdenum disulfide is popular for rechargeable batteries, especially in Li-ion batteries, because of its layered structure and relatively high specific capacity. In this paper, we report MoS2-C nanocomposites that are synthesized by a hydrothermal process, and their use as anode material for Li-ion batteries. Ascorbic acid is used as the carbon source, and the carbon contents can be tuned from 2.5 wt % to 16.2 wt %. With increasing of carbon content, the morphology of MoS2-C nanocomposites changes from nanoflowers to nanospheres, and the particle size is decreased from 200 to 60 nm. This change is caused by the chemical complex interaction of ascorbic acid. The MoS2-C nanocomposite with 8.4 wt % C features a high capacity of 970 mAh g(-1) and sustains a capacity retention ratio of nearly 100% after 100 cycles. When the current increases to 1000 mA g(-1), the capacity still reaches 730 mAh g(-1). The above manifests that the carbon coating layer does not only accelerate the charge transfer kinetics to supply quick discharging and charging, but also hold the integrity of the electrode materials as evidenced by the long cycling stability. Therefore, MoS2-based nanocomposites could be used as commercial anode materials in Li-ion batteries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom