z-logo
open-access-imgOpen Access
Sustainable Rejuvenation of Electrochromic WO3 Films
Author(s) -
RuiTao Wen,
Gunnar A. Niklasson,
Claes G. Granqvist
Publication year - 2015
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.5b09035
Subject(s) - electrochromism , materials science , rejuvenation , nanotechnology , thin film , electrochromic devices , optoelectronics , engineering physics , chemical engineering , electrode , chemistry , gerontology , medicine , engineering
Devices relying on ion transport normally suffer from a decline of their long-term performance due to irreversible ion accumulation in the host material, and this effect may severely curtail the operational lifetime of the device. In this work, we demonstrate that degraded electrochromic WO3 films can sustainably regain their initial performance through galvanostatic detrapping of Li(+) ions. The rejuvenated films displayed degradation features similar to those of the as-prepared films, thus indicating that the detrapping process is effectively reversible so that long-term performance degradation can be successfully avoided. Detrapping did not occur in the absence of an electric current.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom