Enhanced Ultraviolet Stability of Air-Processed Polymer Solar Cells by Al Doping of the ZnO Interlayer
Author(s) -
Mario Prosa,
Marta Tessarolo,
Margherita Bolognesi,
Olivier Margeat,
Desta Gedefaw,
Mériem Gaceur,
Christine VidelotAckermann,
Mats R. Andersson,
Michele Muccini,
Mirko Seri,
Jörg Ackermann
Publication year - 2016
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.5b08255
Subject(s) - materials science , doping , oxygen , nanoparticle , degradation (telecommunications) , ultraviolet , chemical engineering , solar cell , coating , organic solar cell , layer (electronics) , polymer , nanotechnology , optoelectronics , composite material , organic chemistry , chemistry , computer science , telecommunications , engineering
Photostability of organic photovoltaic devices represents a key requirement for the commercialization of this technology. In this field, ZnO is one of the most attractive materials employed as an electron transport layer, and the investigation of its photostability is of particular interest. Indeed, oxygen is known to chemisorb on ZnO and can be released upon UV illumination. Therefore, a deep analysis of the UV/oxygen effects on working devices is relevant for the industrial production where the coating processes take place in air and oxygen/ZnO contact cannot be avoided. Here we investigate the light-soaking stability of inverted organic solar cells in which four different solution-processed ZnO-based nanoparticles were used as electron transport layers: (i) pristine ZnO, (ii) 0.03 at %, (iii) 0.37 at %, and (iv) 0.8 at % aluminum-doped AZO nanoparticles. The degradation of solar cells under prolonged illumination (40 h under 1 sun), in which the ZnO/AZO layers were processed in air or inert atmosphere, is studied. We demonstrate that the presence of oxygen during the ZnO/AZO processing is crucial for the photostability of the resulting solar cell. While devices based on undoped ZnO were particularly affected by degradation, we found that using AZO nanoparticles the losses in performance, due to the presence of oxygen, were partially or totally prevented depending on the Al doping level.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom