z-logo
open-access-imgOpen Access
Role of Postdeposition Thermal Annealing on Intracrystallite and Intercrystallite Structuring and Charge Transport in Poly(3-hexylthiophene)
Author(s) -
Kaichen Gu,
Yucheng Wang,
Ruipeng Li,
Esther H. R. Tsai,
Jonathan W. Onorato,
Christine K. Luscombe,
Rodney D. Priestley,
YuehLin Loo
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c16676
Subject(s) - materials science , crystallinity , annealing (glass) , amorphous solid , crystallite , thin film , polymer , thin film transistor , composite material , optoelectronics , nanotechnology , crystallography , layer (electronics) , chemistry , metallurgy
The performance of electronic devices comprising conjugated polymers as the active layer depends not only on the intrinsic characteristics of the materials but also on the details of the extrinsic processing conditions. In this study, we examine the effect of postdeposition thermal treatments on the microstructure of poly(3-hexylthiophene) (P3HT) thin films and its impact on their electrical properties. Unsurprisingly, we find thermal annealing of P3HT thin films to generally increase their crystallinity and crystallite coherence length while retaining the same crystal structure. Despite such favorable structural improvements of the polymer active layers, however, thermal annealing at high temperatures can lead to a net reduction in the mobility of transistors, implicating structural changes in the intercrystallite amorphous regions of these semicrystalline active layers take place on annealing, and the simplistic picture that crystallinity governs charge transport is not always valid. Our results instead suggest tie-chain pullout, which occurs during crystal growth and perfection upon thermal annealing to govern charge transport, particularly in low-molecular-weight systems in which the tie-chain fraction is low. By demonstrating the interplay between intracrystallite and intercrystallite structuring in determining the macroscopic charge transport, we shed light on how structural evolution and charge-transport properties of nominally the same polymer can vary depending on the details of processing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom