z-logo
open-access-imgOpen Access
Achieving Flat-on Primary Crystals by Nanoconfined Crystallization in High-Temperature Polycarbonate/Poly(vinylidene fluoride) Multilayer Films and Its Effect on Dielectric Insulation
Author(s) -
Xinyue Chen,
Qiong Li,
Deepak Langhe,
Michael Ponting,
Ruipeng Li,
Masafumi Fukuto,
Eric Baer,
Lei Zhu
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c15457
Subject(s) - materials science , dielectric , composite material , dielectric loss , polycarbonate , crystallization , crystallinity , polymer , amorphous solid , optoelectronics , chemical engineering , crystallography , chemistry , engineering
To meet the stringent requirements of next-generation film capacitors for power electronics, multilayer films (MLFs) are fabricated with the advantage of achieving high temperature rating, high energy density, and reasonably low loss simultaneously. In this study, a high permittivity polar polymer, poly(vinylidene fluoride) (PVDF), is multilayered with a linear, low loss dielectric polymer such as high-temperature polycarbonate (HTPC). However, the dielectric loss of these MLFs was still high as compared with current state-of-the-art biaxially oriented polypropylene (BOPP) films. The goal of this work is to decrease the dielectric loss and enhance dielectric insulation by achieving flat-on primary PVDF crystals in MLFs via nanoconfined melt-recrystallization. Based on simultaneous small- and wide-angle X-ray scattering experiments, edge-on lamellar crystals were observed for all as-extruded MLFs, regardless of different PVDF layer thicknesses. However, after melting at 180 °C followed by recrystallization, flat-on primary crystals were successfully achieved when the PVDF layer thickness was below 39 nm. Above 78 nm for the PVDF layer, major edge-on primary crystals with minor flat-on secondary crystals were observed. From leakage current, breakdown, lifetime, and electric displacement-electric field loop studies, MLFs with the flat-on primary crystals exhibited reduced loss and enhanced dielectric insulation as compared to as-extruded MLFs and those with edge-on primary/flat-on secondary crystals. This was attributed to the effective blockage of charge carriers by the flat-on PVDF primary crystals and their reduced ferroelectric switching.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom