Promoting Dual-Targeting Anticancer Effect by Regulating the Dynamic Intracellular Self-Assembly
Author(s) -
Shijin Zhang,
Ye Zhang
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c12271
Subject(s) - nanomedicine , chlorambucil , intracellular , nanotechnology , drug delivery , endoplasmic reticulum , materials science , biophysics , pharmacology , chemistry , biochemistry , biology , nanoparticle , chemotherapy , genetics , cyclophosphamide
Despite the promise of nanomedicine in the fight against complex diseases, the enthusiasm for its pharmaceutical development is backed by the elevated costs associated with the R&D process. Therefore, as a compromise solution, nanotechnology was mainly applied as a drug delivery system to improve bioavailability and controllability of pharmaceutical drugs. Attempting to break the restrictions without elevating potential costs, we multiply the functions of excipients in the nanodelivery system by endowing subcellular-targeting ability. To prove the concept, fluorescent endoplasmic reticulum-targeted short peptides were covalently connected to chemotherapy medication chlorambucil achieving enhanced drug-loading efficiency. Via visualized intracellular dynamic enzyme-catalyzed hydrolysis, the ER-targeting excipient and nucleus-targeting chlorambucil are released simultaneously, achieving a synergistic anticancer effect and elucidating the influence of intracellular self-assembly transition on enzymatic reactions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom