Antibody Targeted Metal–Organic Frameworks for Bioimaging Applications
Author(s) -
Kimberly S. Butler,
Charles J. Pearce,
Elizabeth A. Nail,
Grace A. Vincent,
Dorina F. Sava Gallis
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c07835
Subject(s) - amine gas treating , carbodiimide , primary (astronomy) , reagent , combinatorial chemistry , molecule , linker , metal organic framework , materials science , nanotechnology , organic molecules , small molecule , chemistry , organic chemistry , biochemistry , computer science , physics , astronomy , operating system , adsorption
We report on the availability and chemical utility of primary amines within metal-organic frameworks (MOFs) for cell targeting. Primary amine groups represent one of the most versatile chemical moieties for conjugation to biologically relevant molecules, including antibodies and enzymes. Specifically, we used two different chemical conjugations schemes, utilizing the amino functionality on the organic linker: first, carbodiimide chemistry was used to link the primary amine to available carboxyl groups on the protein neutravidin; second, sulfhydryl cross-linking chemistry was used via Traut's reagent scheme. Importantly, this is the first report that documents this methodology implemented with MOF systems. Finally, the ability of the EpCAM antibody targeted MOFs to bind to a human epithelial cell line (A549), a common target for imaging studies, was confirmed with confocal microscopy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom