Bio-Inspired Preparation of Clay–Hexacyanoferrate Composite Hydrogels as Super Adsorbents for Cs+
Author(s) -
Huagui Zhang,
Chris S. Hodges,
Prashant Kumar Mishra,
Ji Young Yoon,
Timothy N. Hunter,
Jae Wook Lee,
David Harbottle
Publication year - 2020
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/acsami.0c06598
Subject(s) - materials science , adsorption , chemical engineering , self healing hydrogels , composite number , montmorillonite , nanoparticle , polymerization , membrane , copper , in situ polymerization , polymer , composite material , polymer chemistry , nanotechnology , organic chemistry , chemistry , biochemistry , engineering , metallurgy
A facile and low-cost fabrication route, inspired by the adhesive proteins secreted by mussels, has been developed to prepare a clay-based composite hydrogel (DHG(Cu)) containing hexacyanoferrate (HCF) nanoparticles for the selective removal of Cs + from contaminated water. Initially, montmorillonite was exfoliated prior to coating with a thin layer of polydopamine (PDOPA) via the self-polymerization of dopamine. Mixing the composite (D-clay) with the HCF precursor, followed by the addition of copper ions, led to the self-assembly of the polymer-coated exfoliated clay nanosheets into a three-dimensional network and in situ growth of KCuHCF nanoparticles embedded within the gel structure. Analytical characterization verified the fabrication route and KCuHCF immobilization by a copper-ligand complexation. Rheology testing revealed the composite hydrogel to be elastic under low strain and exhibited reversible, self-healing behavior following high strain deformation, providing a good retention of KCuHCF nanoparticles in the membrane. The adsorbent DHG(Cu) showed a superior Cs + adsorption capacity (∼173 mg/g), with the performance maintained over a wide pH range, and an excellent selectivity for Cs + when dispersed in seawater at low concentrations of 0.2 ppm. On the basis of its excellent mechanico-chemical properties, the fabricated hydrogel was tested as a membrane in column filtration, showing excellent removal of Cs + from Milli-Q water and seawater, with the performance only limited by the fluid residence time. For comparison, the study also considered other composite hydrogels, which were fabricated as intermediates of DHG(Cu) or fabricated with Fe 3+ as the cross-linker and reactant for HCF nanoparticle synthesis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom