z-logo
open-access-imgOpen Access
Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts
Author(s) -
Jhon Quiroz,
Eduardo C. M. Barbosa,
Thaylan Pinheiro Araújo,
Jhonatan Luiz Fiorio,
YiChi Wang,
Yichao Zou,
Tong Mou,
Tiago Vinicius Alves,
Daniela C. de Oliveira,
Bin Wang,
Sarah J. Haigh,
Liane M. Rossi,
Pedro H. C. Camargo
Publication year - 2018
Publication title -
nano letters
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 4.853
H-Index - 488
eISSN - 1530-6992
pISSN - 1530-6984
DOI - 10.1021/acs.nanolett.8b03499
Subject(s) - nanomaterial based catalyst , selectivity , plasmon , nanotechnology , materials science , chemistry , chemical engineering , nanoparticle , catalysis , optoelectronics , organic chemistry , engineering
The localized surface plasmon resonance (LSPR) excitation in plasmonic nanoparticles has been used to accelerate several catalytic transformations under visible-light irradiation. In order to fully harness the potential of plasmonic catalysis, multimetallic nanoparticles containing a plasmonic and a catalytic component, where LSPR-excited energetic charge carriers and the intrinsic catalytic active sites work synergistically, have raised increased attention. Despite several exciting studies observing rate enhancements, controlling reaction selectivity remains very challenging. Here, by employing multimetallic nanoparticles combining Au, Ag, and Pt in an Au@Ag@Pt core-shell and an Au@AgPt nanorattle architectures, we demonstrate that reaction selectivity of a sequential reaction can be controlled under visible light illumination. The control of the reaction selectivity in plasmonic catalysis was demonstrated for the hydrogenation of phenylacetylene as a model transformation. We have found that the localized interaction between the triple bond in phenylacetylene and the Pt nanoparticle surface enables selective hydrogenation of the triple bond (relative to the double bond in styrene) under visible light illumination. Atomistic calculations show that the enhanced selectivity toward the partial hydrogenation product is driven by distinct adsorption configurations and charge delocalization of the reactant and the reaction intermediate at the catalyst surface. We believe these results will contribute to the use of plasmonic catalysis to drive and control a wealth of selective molecular transformations under ecofriendly conditions and visible light illumination.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom