z-logo
open-access-imgOpen Access
Cyclodextrin Polymer Preserves Sirolimus Activity and Local Persistence for Antifibrotic Delivery over the Time Course of Wound Healing
Author(s) -
Nathan A. Rohner,
Steve J. Schomisch,
Jeffrey M. Marks,
Horst A. von Recum
Publication year - 2019
Publication title -
molecular pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.13
H-Index - 127
eISSN - 1543-8392
pISSN - 1543-8384
DOI - 10.1021/acs.molpharmaceut.9b00144
Subject(s) - chemistry , drug delivery , in vivo , sirolimus , pharmacology , wound healing , cyclodextrin , microparticle , ex vivo , beta cyclodextrins , in vitro , surgery , medicine , biochemistry , biology , microbiology and biotechnology , organic chemistry , astrobiology
Fibrosis and dysphagic stricture of the esophagus is a major unaddressed problem often accompanying endoscopic removal of esophageal cancers and precancerous lesions. While weekly injections of antiproliferative agents show potential for improved healing, repeated injections are unlikely clinically and may alternatively be replaced by creating an esophageal drug delivery system. Affinity-based polymers have previously shown success for continuous delivery of small molecules for weeks to months. Herein, we explored the potential of an affinity-based microparticle to provide long-term release of an antiproliferative drug, sirolimus. In molecular docking simulations and surface plasmon resonance experiments, sirolimus was found to have suitable affinity for beta-cyclodextrin, while dextran, as a low affinity control, was validated. Polymerized beta-cyclodextrin microparticles exhibited 30 consecutive days of delivery of sirolimus during in vitro release studies. In total, the polymerized beta-cyclodextrin microparticles released 36.9 mg of sirolimus per milligram of polymer after one month of incubation in vitro. Taking daily drug release aliquots and applying them to PT-K75 porcine mucosal fibroblasts, we observed that cyclodextrin microparticle delivery preserved bioactivity of sirolimus inhibiting proliferation by 27-67% and migration of fibroblasts by 28-100% of buffer treated controls in vitro. Testing for esophageal injection site losses, no significant loss was incurred under simulated saliva flow for 10 min, and 16.7% of fluorescently labeled polymerized cyclodextrin microparticle signal was retained at 28 days after submucosal injection in esophageal tissue ex vivo versus only 4% of the initial amount remaining for free dye molecules injected alone. By combining affinity-based drug delivery for continuous long-term release with a microparticle platform that is injectable yet remains localized in tissue interstitium, this combination platform demonstrates promise for preventing esophageal fibrosis and stricture.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here