z-logo
open-access-imgOpen Access
Physicochemical Rules for Identifying Monoclonal Antibodies with Drug-like Specificity
Author(s) -
Yulei Zhang,
Lina Wu,
Priyanka Gupta,
Alec A. Desai,
Matthew D. Smith,
Lilia A. Rabia,
Seth D. Ludwig,
Peter M. Tessier
Publication year - 2020
Publication title -
molecular pharmaceutics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.13
H-Index - 127
eISSN - 1543-8392
pISSN - 1543-8384
DOI - 10.1021/acs.molpharmaceut.0c00257
Subject(s) - antibody , monoclonal antibody , drug , computational biology , antigen , chemistry , drug discovery , immunology , biology , biochemistry , pharmacology
The ability of antibodies to recognize their target antigens with high specificity is fundamental to their natural function. Nevertheless, therapeutic antibodies display variable and difficult-to-predict levels of nonspecific and self-interactions that can lead to various drug development challenges, including antibody aggregation, abnormally high viscosity, and rapid antibody clearance. Here we report a method for predicting the overall specificity of antibodies in terms of their relative risk for displaying high levels of nonspecific or self-interactions at physiological conditions. We find that individual and combined sets of chemical rules that limit the maximum and minimum numbers of certain solvent-exposed amino acids in antibody variable regions are strong predictors of specificity for large panels of preclinical and clinical-stage antibodies. We also demonstrate how the chemical rules can be used to identify sites that mediate nonspecific interactions in suboptimal antibodies and guide the design of targeted sublibraries that yield variants with high antibody specificity. These findings can be readily used to improve the selection and engineering of antibodies with drug-like specificity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here