Pronounced Surface Effects on the Curie Transition Temperature in Nanoconfined P(VDF-TrFE) Crystals
Author(s) -
Niels L. Meereboer,
Ivan Terzić,
Harm Hendrik Mellema,
Giuseppe Portale,
Katja Loos
Publication year - 2019
Publication title -
macromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.994
H-Index - 313
eISSN - 1520-5835
pISSN - 0024-9297
DOI - 10.1021/acs.macromol.8b02382
Subject(s) - curie temperature , differential scanning calorimetry , polystyrene , materials science , phase transition , glass transition , copolymer , curie , scattering , transition temperature , condensed matter physics , thermodynamics , polymer , composite material , optics , ferromagnetism , physics , superconductivity
Changes in the Curie transition temperature of nanoconfined poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) copolymers can have a severe impact on the electroactive behavior and the application range of these materials. Therefore, the origin of the change in the Curie transition temperature requires a profound understanding. In this work, block copolymer self-assembly into a spherical morphology proves to be a viable method to effectively confine P(VDF-TrFE) in three dimensions for studying the effect of nanoconfinement on the Curie transition. Using differential scanning calorimetry and wide-angle X-ray scattering, easily accessible experimental techniques, we follow the crystalline phase transitions, showing that confining P(VDF-TrFE) in a nonpolar polystyrene (PS) or poly(4 -tert -butoxystyrene) (P t BOS) matrix results in an increase of the Curie transition upon cooling and heating. However, when a more polar matrix is used to nanoconfine P(VDF-TrFE), the Curie transition temperature is drastically reduced due to surface effects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom