z-logo
open-access-imgOpen Access
Molecular Dynamics at the Interface between Ice and Poly(vinyl alcohol) and Ice Recrystallization Inhibition
Author(s) -
Lindong Weng,
Shan L. Stott,
Mehmet Toner
Publication year - 2017
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/acs.langmuir.7b03243
Subject(s) - antifreeze protein , recrystallization (geology) , antifreeze , ice crystals , chemistry , polyvinyl alcohol , molecule , molecular dynamics , vinyl alcohol , chemical physics , chemical engineering , materials science , polymer , nanotechnology , organic chemistry , geology , computational chemistry , physics , biochemistry , meteorology , engineering , paleontology
Ice formation is a ubiquitous process that poses serious challenges for many areas. Nature has evolved a variety of different mechanisms to regulate ice formation. For example, many cold-adapted species produce antifreeze proteins (AFPs) and/or antifreeze glycoproteins (AFGPs) to inhibit ice recrystallization. Although several synthetic substitutes for AF(G)Ps have been developed, the fundamental principles of designing AF(G)P mimics are still missing. In this study, we explored the molecular dynamics of ice recrystallization inhibition (IRI) by poly(vinyl alcohol) (PVA), a well-recognized ice recrystallization inhibitor, to shed light on the otherwise hidden ice-binding mechanisms of chain polymers. Our molecular dynamics simulations revealed a stereoscopic, geometrical match between the hydroxyl groups of PVA and the water molecules of ice, and provided microscopic evidence of the adsorption of PVA to both the basal and prism faces of ice and the incorporation of short-chain PVA into the ice lattice. The length of PVA, i.e., the number of hydroxyl groups, seems to be a key factor dictating the performance of IRI, as the PVA molecule must be large enough to prevent the joining together of adjacent curvatures in the ice front. The findings in this study will help pave the path for addressing a pressing challenge in designing synthetic ice recrystallization inhibitors rationally, by enriching our mechanistic understanding of IRI process by macromolecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here