
Adsorption of Water and Butanol in Silicalite-1 Film Studied with in Situ Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy
Author(s) -
Amirfarrokh Farzaneh,
Ming Zhou,
Elisaveta Potapova,
Zoltán Bacsik,
Lindsay Ohlin,
Allan Holmgren,
Jonas Hedlund,
Mattias Grahn
Publication year - 2015
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/acs.langmuir.5b00489
Subject(s) - adsorption , butanol , attenuated total reflection , chemistry , fourier transform infrared spectroscopy , aqueous solution , analytical chemistry (journal) , water vapor , infrared spectroscopy , langmuir adsorption model , chromatography , chemical engineering , organic chemistry , ethanol , engineering
Biobutanol produced by, e.g., acetone-butanol-ethanol (ABE) fermentation is a promising alternative to petroleum-based chemicals as, e.g., solvent and fuel. Recovery of butanol from dilute fermentation broths by hydrophobic membranes and adsorbents has been identified as a promising route. In this work, the adsorption of water and butanol vapor in a silicalite-1 film was studied using in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy to better understand the adsorption properties of silicalite-1 membranes and adsorbents. Single-component adsorption isotherms were determined in the temperature range of 35-120 °C, and the Langmuir model was successfully fitted to the experimental data. The adsorption of butanol is very favorable compared to that of water. When the silicalite-1 film was exposed to a butanol/water vapor mixture with 15 mol % butanol (which is the vapor composition of an aqueous solution containing 2 wt % butanol, a typical concentration in an ABE fermentation broth, i.e., the composition of the gas obtained from gas stripping of an ABE broth) at 35 °C, the adsorption selectivity toward butanol was as high as 107. These results confirm that silicalite-1 quite selectively adsorbs hydrocarbons from vapor mixtures. To the best of our knowledge, this is the first comprehensive study on the adsorption of water and butanol in silicalite-1 from vapor phase.