
Structural Diversity in Cryoaerogel Synthesis
Author(s) -
Dennis Müller,
Lars F. Klepzig,
Anja Schlosser,
Dirk Dorfs,
Nadja C. Bigall
Publication year - 2021
Publication title -
langmuir
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.042
H-Index - 333
eISSN - 1520-5827
pISSN - 0743-7463
DOI - 10.1021/acs.langmuir.0c03619
Subject(s) - microstructure , lamellar structure , materials science , nanotechnology , chemical engineering , structuring , scanning electron microscope , composite material , finance , engineering , economics
Different techniques that enable the selective microstructure design of aerogels without the use of additives are presented. For this, aerogels were prepared from platinum nanoparticle solutions using the cryoaerogelation method, and respective impacts of different freezing times, freezing media, and freezing temperatures were investigated with electron microscopy as well as inductively coupled plasma optical emission spectroscopy. The use of lower freezing temperatures, freezing media with higher heat conductivities, and longer freezing periods led to extremely different network structures with enhanced stability. In detail, materials were created in the shape of lamellar, cellular, and dendritic networks. So far, without changing the building blocks, it was not possible to create the selective morphologies of resulting aerogels in cryoaerogelation. Now, these additive-free approaches enable targeted structuring and will open up new opportunities in the future cryoaerogel design.