z-logo
open-access-imgOpen Access
Consequences of Lipid Remodeling of Adipocyte Membranes Being Functionally Distinct from Lipid Storage in Obesity
Author(s) -
Kedi Liu,
Animesh Acharjee,
Christine Hinz,
Sonia Liggi,
Antonio Murgia,
Júlia Dénes,
Melanie Gulston,
Xinzhu Wang,
Yajing Chu,
James A. West,
Robert C. Glen,
Lee D. Roberts,
Andrew J. Murray,
Julian L. Griffin
Publication year - 2020
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/acs.jproteome.9b00894
Subject(s) - lipidome , adipose tissue , adipocyte , lipid metabolism , lipidomics , glycerophospholipid , chemistry , biochemistry , white adipose tissue , metabolism , biology , phospholipid , membrane , microbiology and biotechnology
Obesity is a complex disorder where the genome interacts with diet and environmental factors to ultimately influence body mass, composition, and shape. Numerous studies have investigated how bulk lipid metabolism of adipose tissue changes with obesity and, in particular, how the composition of triglycerides (TGs) changes with increased adipocyte expansion. However, reflecting the analytical challenge posed by examining non-TG lipids in extracts dominated by TGs, the glycerophospholipid composition of cell membranes has been seldom investigated. Phospholipids (PLs) contribute to a variety of cellular processes including maintaining organelle functionality, providing an optimized environment for membrane-associated proteins, and acting as pools for metabolites (e.g. choline for one-carbon metabolism and for methylation of DNA). We have conducted a comprehensive lipidomic study of white adipose tissue in mice which become obese either through genetic modification ( ob / ob ), diet (high fat diet), or a combination of the two, using both solid phase extraction and ion mobility to increase coverage of the lipidome. Composition changes in seven classes of lipids (free fatty acids, diglycerides, TGs, phosphatidylcholines, lyso-phosphatidylcholines, phosphatidylethanolamines, and phosphatidylserines) correlated with perturbations in one-carbon metabolism and transcriptional changes in adipose tissue. We demonstrate that changes in TGs that dominate the overall lipid composition of white adipose tissue are distinct from diet-induced alterations of PLs, the predominant components of the cell membranes. PLs correlate better with transcriptional and one-carbon metabolism changes within the cell, suggesting that the compositional changes that occur in cell membranes during adipocyte expansion have far-reaching functional consequences. Data are available at MetaboLights under the submission number: MTBLS1775.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom