HYPERsol: High-Quality Data from Archival FFPE Tissue for Clinical Proteomics
Author(s) -
Dylan M. Marchione,
Ilyana Ilieva,
Kyle M. Devins,
Danielle Sharpe,
Darryl Pappin,
Benjamin A. García,
John P. Wilson,
John Wojcik
Publication year - 2020
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/acs.jproteome.9b00686
Subject(s) - proteomics , workflow , proteome , computer science , computational biology , biomarker discovery , sonication , database , biology , bioinformatics , chromatography , chemistry , biochemistry , gene
Massive formalin-fixed, paraffin-embedded (FFPE) tissue archives exist worldwide, representing an invaluable resource for clinical proteomics research. However, current protocols for FFPE proteomics lack standardization, efficiency, reproducibility, and scalability. Here we present high-yield protein extraction and recovery by direct solubilization (HYPERsol), an optimized workflow using ultrasonication and S-Trap sample processing that enables proteome coverage and quantification from FFPE samples comparable to that achieved from flash-frozen tissue (average R = 0.936). When applied to archival samples, HYPERsol resulted in high-quality data from FFPE specimens in storage for up to 17 years, and may enable the discovery of new immunohistochemical markers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom