z-logo
open-access-imgOpen Access
Genetic Variability of the SARS-CoV-2 Pocketome
Author(s) -
Setayesh Yazdani,
Nicola De Maio,
Yining Ding,
Vijay Shahani,
Nick Goldman,
Matthieu Schapira
Publication year - 2021
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/acs.jproteome.1c00206
Subject(s) - druggability , helicase , computational biology , biology , binding site , coronavirus , rna , rna polymerase , genetics , covid-19 , genome , virology , infectious disease (medical specialty) , disease , medicine , gene , pathology
In the absence of effective treatment, COVID-19 is likely to remain a global disease burden. Compounding this threat is the near certainty that novel coronaviruses with pandemic potential will emerge in years to come. Pan-coronavirus drugs-agents active against both SARS-CoV-2 and other coronaviruses-would address both threats. A strategy to develop such broad-spectrum inhibitors is to pharmacologically target binding sites on SARS-CoV-2 proteins that are highly conserved in other known coronaviruses, the assumption being that any selective pressure to keep a site conserved across past viruses will apply to future ones. Here we systematically mapped druggable binding pockets on the experimental structure of 15 SARS-CoV-2 proteins and analyzed their variation across 27 α- and β-coronaviruses and across thousands of SARS-CoV-2 samples from COVID-19 patients. We find that the two most conserved druggable sites are a pocket overlapping the RNA binding site of the helicase nsp13 and the catalytic site of the RNA-dependent RNA polymerase nsp12, both components of the viral replication-transcription complex. We present the data on a public web portal (https://www.thesgc.org/SARSCoV2_pocketome/), where users can interactively navigate individual protein structures and view the genetic variability of drug-binding pockets in 3D.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom