z-logo
open-access-imgOpen Access
Improved SILAC Quantification with Data-Independent Acquisition to Investigate Bortezomib-Induced Protein Degradation
Author(s) -
Lindsay K. Pino,
Josue Baeza,
Richard Lauman,
Birgit Schilling,
Benjamin A. Garcia
Publication year - 2021
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/acs.jproteome.0c00938
Subject(s) - stable isotope labeling by amino acids in cell culture , quantitative proteomics , bortezomib , protein turnover , proteomics , computational biology , protein degradation , multiple myeloma , chemistry , biology , biochemistry , protein biosynthesis , immunology , gene
Stable isotope labeling by amino acids in cell culture (SILAC) coupled to data-dependent acquisition (DDA) is a common approach to quantitative proteomics with the desirable benefit of reducing batch effects during sample processing and data acquisition. More recently, using data-independent acquisition (DIA/SWATH) to systematically measure peptides has gained popularity for its comprehensiveness, reproducibility, and accuracy of quantification. The complementary advantages of these two techniques logically suggests combining them. Here we develop a SILAC-DIA-MS workflow using free, open-source software. We empirically determine that using DIA achieves similar peptide detection numbers as DDA and that DIA improves the quantitative accuracy and precision of SILAC by an order of magnitude. Finally, we apply SILAC-DIA-MS to determine protein turnover rates of cells treated with bortezomib, an FDA-approved 26S proteasome inhibitor for multiple myeloma and mantle cell lymphoma. We observe that SILAC-DIA produces more sensitive protein turnover models. Of the proteins determined to be differentially degraded by both acquisition methods, we find known proteins that are degraded by the ubiquitin-proteasome pathway, such as HNRNPK, EIF3A, and IF4A1/EIF4A-1, and a slower turnover for CATD, a protein implicated in invasive breast cancer. With improved quantification from DIA, we anticipate that this workflow will make SILAC-based experiments like protein turnover more sensitive.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here