
Peptide−Spectrum Match Validation with Internal Standards (P−VIS): Internally-Controlled Validation of Mass Spectrometry-Based Peptide Identifications
Author(s) -
Timothy A. Wiles,
Laura Saba,
Thomas Delong
Publication year - 2020
Publication title -
journal of proteome research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.644
H-Index - 161
eISSN - 1535-3907
pISSN - 1535-3893
DOI - 10.1021/acs.jproteome.0c00355
Subject(s) - mass spectrometry , tandem mass spectrometry , peptide , proteome , context (archaeology) , chromatography , computer science , data mining , computational biology , chemistry , biology , biochemistry , paleontology
Liquid chromatography-tandem mass spectrometry is an increasingly powerful tool for studying proteins in the context of disease. As technological advances in instrumentation and data analysis have enabled deeper profiling of proteomes and peptidomes, the need for a rigorous, standardized approach to validate individual peptide-spectrum matches (PSMs) has emerged. To address this need, we developed a novel and broadly applicable workflow: PSM validation with internal standards (P-VIS). In this approach, the fragmentation spectrum and chromatographic retention time of a peptide within a biological sample are compared with those of a synthetic version of the putative peptide sequence match. Similarity measurements obtained for a panel of internal standard peptides are then used to calculate a prediction interval for valid matches. If the observed degree of similarity between the biological and the synthetic peptide falls within this prediction interval, then the match is considered valid. P-VIS enables systematic and objective assessment of the validity of individual PSMs, providing a measurable degree of confidence when identifying peptides by mass spectrometry.