Simulating Enhanced Methane Deliverable Capacity of Guest Responsive Pores in Intrinsically Flexible MOFs
Author(s) -
Matthew Witman,
Bradley Wright,
Berend Smit
Publication year - 2019
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.9b02449
Subject(s) - deliverable , methane , metal organic framework , nanotechnology , materials science , chemical engineering , chemistry , organic chemistry , engineering , systems engineering , adsorption
A novel computational procedure, based on the principles of flat-histogram Monte Carlo, is developed for facile prediction of the adsorption thermodynamics of intrinsically flexible adsorbents. We then demonstrate how an accurate prediction of methane deliverable capacity in a metal-organic framework (MOF) with significant intrinsic flexibility requires use of such a method. Dynamic side chains in the framework respond to methane adsorbates and reorganize to exhibit a more conducive pore space at high adsorbate densities while simultaneously providing a less conducive pore space at low adsorbate densities. This "responsive pore" MOF achieves ∼20% higher deliverable capacity than if the framework were rigid and elucidates a strategy for designing high deliverable capacity MOFs in the future.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom