Photoelectrons Are Not Always Quite Free
Author(s) -
Jarrett L. Mason,
Josey E. Topolski,
Joshua C. Ewigleben,
Srinivasan S. Iyengar,
Caroline Chick Jarrold
Publication year - 2018
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.8b03253
Subject(s) - photoelectric effect , physics , optics
The photoelectron spectra of Sm 2 O - obtained over a range of photon energies exhibit anomalous changes in relative excited-state band intensities. Specifically, the excited-state transition intensities increase relative to the transition to the neutral ground state with decreasing photon energy, the opposite of what is expected from threshold effects. This phenomenon was previously observed in studies on several Sm-rich homo- and heterolanthanide oxides collected with two different harmonic outputs of a Nd:YAG (2.330 and 3.495 eV) [ J. Chem. Phys. 2017, 146, 194310]. We relate these anomalous intensities to populations of ground and excited anionic and neutrals states through the inspection of time-dependent perturbation theory within the adiabatic and sudden limits and for the first time show that transition intensities in photoelectron spectroscopy have a deep significance in gauging participation from excited states. We believe our results will have significance in the study of other electron-rich systems that have especially high density of accessible spin states.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom