Grazing-Angle Neutron Diffraction Study of the Water Distribution in Membrane Hemifusion: From the Lamellar to Rhombohedral Phase
Author(s) -
Shuo Qian,
D.K. Rai
Publication year - 2018
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.8b01602
Subject(s) - neutron diffraction , lamellar structure , small angle neutron scattering , beamline , materials science , neutron scattering , crystallography , lamellar phase , lipid bilayer , neutron , small angle scattering , small angle x ray scattering , phase (matter) , scattering , chemistry , membrane , optics , physics , crystal structure , nuclear physics , organic chemistry , beam (structure) , biochemistry
The water distribution between lipid bilayers is important in understanding the role of the hydration force at different steps of the membrane fusion pathway. In this study, we used grazing-angle neutron diffraction to map out the water distribution in lipid bilayers transiting from a lamellar structure to the hemifusion "stalk" structure in a rhombohedral phase. Under osmotic pressure exerted by different levels of relative humidity, the lipid membrane sample was maintained in equilibrium at different lattices suitable for neutron diffraction. The D 2 O used to hydrate the lipid membrane sample stood out from the lipid in the reconstructed structure because of its much higher coherent neutron scattering length density. The density map indicates that water dissociated from the headgroup in the lamellar phase. In the rhombohedral phase, water was significantly reduced and was squeezed into pockets around the stalk. This study complements earlier structural studies by grazing-angle X-ray diffraction, which is sensitive to only the parts of the structure with high electron density (such as phosphors). The experiment also demonstrated that the recently developed time-of-flight small-angle neutron scattering beamline at the Spallation Neutron Source is suitable for grazing-angle neutron diffraction to provide the structures of large unit cells on the order of a few nanometers, such as biomembrane structures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom