z-logo
open-access-imgOpen Access
Atomic Layer Etching: Rethinking the Art of Etch
Author(s) -
Keren J. Kanarik,
Samantha Tan,
Richard A. Gottscho
Publication year - 2018
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.8b00997
Subject(s) - etching (microfabrication) , atomic layer deposition , nanotechnology , layer (electronics) , materials science , dry etching , plasma etching , optoelectronics , computer science , engineering physics , physics
Atomic layer etching (ALE) is the most advanced etching technique in production today. In this Perspective, we describe ALE in comparison to long-standing conventional etching techniques, relating it to the underlying principles behind the ancient art of etching. Once considered too slow, we show how leveraging plasma has made ALE a thousand times faster than earlier approaches. While Si is the case study ALE material, prospects are better for strongly bound materials such as C, Ta, W, and Ru. Among the ALE advantages discussed, we introduce an ALE benefit with potentially broad application-the ALE smoothing effect-in which the surface flattens. Finally, regarding its well-established counterpart of atomic layer deposition (ALD), we discuss the combination of ALE and ALD in tackling real world challenges at sub-10 nm technology nodes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom