Current Challenges and Prospective Research for Upscaling Hybrid Perovskite Photovoltaics
Author(s) -
Spencer T. Williams,
Adharsh Rajagopal,
ChuChen Chueh,
Alex K.Y. Jen
Publication year - 2016
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.5b02651
Subject(s) - photovoltaics , commercialization , perovskite (structure) , scale (ratio) , nanotechnology , engineering physics , electronics , photovoltaic system , computer science , industrial organization , materials science , electrical engineering , business , engineering , physics , marketing , quantum mechanics , chemical engineering
Organic-inorganic hybrid perovskite photovoltaics (PSCs) are poised to push toward technology translation, but significant challenges complicating commercialization remain. Though J-V hysteresis and ecotoxicity are uniquely imposing issues at scale, CH3NH3PbI3 degradation is by far the sharpest limitation to the technology's potential market contribution. Herein, we offer a perspective on the practical market potential of PSCs, the nature of fundamental PSC challenges at scale, and an outline of prospective solutions for achieving module scale PSC production tailored to intrinsic advantages of CH3NH3PbI3. Although integrating PSCs into the energy grid is complicated by CH3NH3PbI3 degradation, the ability of PSCs to contribute to consumer electronics and other niche markets like those organic photovoltaics have sought footing in rests primarily upon the technology's price point. Thus, slot die, roll-to-roll processing has the greatest potential to enable PSC scale-up, and herein, we present a perspective on the research necessary to realize fully printable PSCs at scale.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom