Curvature-Induced Anomalous Enhancement in the Work Function of Nanostructures
Author(s) -
Jasmin Kaur,
Rama Kant
Publication year - 2015
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.5b01197
Subject(s) - work function , curvature , work (physics) , gaussian curvature , ellipsoid , physics , function (biology) , classical mechanics , geometry , condensed matter physics , quantum mechanics , mathematics , electrode , astronomy , evolutionary biology , biology
An analytical theory to estimate the electronic work function in curved geometries is formulated under Thomas-Fermi approximation. The work function is framed as the work against the electrostatic self-capacitive energy. The contribution of surface curvature is characterized by mean and Gaussian curvature (through multiple scattering expansion). The variation in work function of metal and semimetal nanostructures is shown as the consequence of surface radius of curvature comparable to electronic screening length. For ellipsoidal particles, the maximum value of work function is observed at the equator and poles for oblate and prolate particles, respectively, whereas triaxial ellipsoid shows nonuniform distribution of the work function over the surface. Similarly, theory predicts manifold increase in the work function for a particle with atomic scale roughness. Finally, the theory is validated with experimental data, and it is concluded that the work function of a nanoparticle can be tailored through its shape.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom