z-logo
open-access-imgOpen Access
Rotational Dynamics of an Amphidynamic Zirconium Metal–Organic Framework Determined by Dielectric Spectroscopy
Author(s) -
Zhiyu Liu,
Yangyang Wang,
Miguel A. Garcı́a-Garibay
Publication year - 2021
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.1c01333
Subject(s) - activation energy , relaxation (psychology) , dielectric , zirconium , chemistry , dipole , dielectric spectroscopy , debye , kinetic energy , spectroscopy , chemical physics , materials science , nuclear magnetic resonance , analytical chemistry (journal) , inorganic chemistry , organic chemistry , physics , psychology , social psychology , optoelectronics , electrode , quantum mechanics , electrochemistry
A zirconium metal-organic framework with a difluorophenylene rotator bearing a permanent electric dipole of ∼3.2 D was synthesized, and its rotational motion was analyzed by temperature- and frequency-dependent broadband dielectric spectroscopy. While solid-state NMR confirms fast rotation qualitatively, the dissipation factors measured between 113 and 153 K suggested an activation energy E a = 2.6 kcal/mol, but deviations from a single Debye relaxation suggested a dynamic process that cannot be accounted for by a well-defined potential with a single activation barrier. The dynamic heterogeneity of the dipolar rotor was confirmed by analysis in terms of a Cole-Cole relaxation, which suggested a mean barrier of ∼1.9 kcal/mol, with a heterogeneity that decreases as temperature increases. Based on the single-crystal structure, we propose that the kinetic heterogeneity results from a temperature-dependent potential where rotation motion is mediated by the escape of the rotator from an energy well created by a double Ph-H···F-Ph hydrogen bond.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom