z-logo
open-access-imgOpen Access
Unexpected Low Mechanical Stability of Titin I27 Domain at Physiologically Relevant Temperature
Author(s) -
Miao Yu,
Jung-Hsuan Lu,
Shimin Le,
Jie Yan
Publication year - 2021
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.1c01309
Subject(s) - titin , immunoglobulin domain , chemistry , biophysics , materials science , biochemistry , biology , receptor , sarcomere , microbiology and biotechnology , myocyte
The extensively studied immunoglobulin (Ig) domain I27 of the giant force-bearing protein titin has provided a basis for our current understanding of the structural stability, dynamics, and function of the numerous mechanically stretched Ig domains in the force-bearing I-band of titin. The current consensus is that titin I27 has a high mechanical stability characterized by very low unfolding rate (<10 -3 s -1 ) in physiological force range and high unfolding forces (>100 pN) at typical physiological force loading rates from experiments at typical laboratory temperatures. Here, we report that when the temperature is increased from 23 to 37 °C, the unfolding rate of I27 drastically increases by ∼100-fold at the physiological level of forces, indicating a low mechanical stability of I27 at physiological conditions. The result provides new insights into the structural states and the associated functions of I27 and other similar titin I-band Ig domains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom