The “Hole” Story in Ionized Water from the Perspective of Ehrenfest Dynamics
Author(s) -
Lixin Lu,
Andrew Wildman,
Andrew J. Jenkins,
Linda Young,
Aurora E. Clark,
Xiaosong Li
Publication year - 2020
Publication title -
the journal of physical chemistry letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.563
H-Index - 203
ISSN - 1948-7185
DOI - 10.1021/acs.jpclett.0c02987
Subject(s) - perspective (graphical) , dynamics (music) , ionization , statistical physics , physics , theoretical physics , classical mechanics , computer science , quantum mechanics , artificial intelligence , ion , acoustics
The radiolysis of liquid water and the radiation-matter interactions that happen in aqueous environments are important to the fields of chemistry, materials, and environmental sciences, as well as the biological and physiological response to extreme conditions and medical treatments. The initial stage of radiolysis is the ultrafast response, or hole dynamics, that triggers chemical processes within complex energetic landscapes that may include reactivity. A fundamental understanding necessitates the use of theoretical methods that are capable of simulating both ultrafast coherence and non-adiabatic energy transfer pathways. In this work, we carry out an ab initio Ehrenfest dynamics study to provide a more complete description of the ultrafast dynamics and reactive events initiated by photoionization of water. After sudden ionization, a range of processes, including hole trapping and transfer, large OH oscillations, proton transfer and subsequent relay, formation of the metastable Zundel complex, and long-lived coherence, are identified and new insight into their driving forces is elucidated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom