Elucidating Structure–Property Relationships in Aluminum Alloy Corrosion Inhibitors by Machine Learning
Author(s) -
Tiago L. P. Galvão,
Gerard Novell-Leruth,
Alena Kuznetsova,
João Tedim,
José R. B. Gomes
Publication year - 2020
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.9b09538
Subject(s) - corrosion , virtual screening , work (physics) , set (abstract data type) , computer science , quantitative structure–activity relationship , machine learning , training set , property (philosophy) , molecular descriptor , artificial intelligence , data mining , materials science , chemistry , engineering , computational chemistry , mechanical engineering , metallurgy , molecular dynamics , philosophy , epistemology , programming language
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom