Effect of Alkali and Trivalent Metal Ions on the High-Pressure Phase Transition of [C2H5NH3]MI0.5MIII0.5(HCOO)3 (MI = Na, K and MIII = Cr, Al) Heterometallic Perovskites
Author(s) -
Maciej Ptak,
Katrine L. Svane,
Ines E. Collings,
Waldeci Paraguassu
Publication year - 2020
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/acs.jpcc.0c00372
Subject(s) - bulk modulus , phase transition , chemistry , alkali metal , raman spectroscopy , density functional theory , crystallography , crystal structure , materials science , thermodynamics , computational chemistry , physics , organic chemistry , optics , composite material
We report the high-pressure behavior of two perovskite-like metal formate frameworks with the ethylammonium cation (EtAKCr and EtANaAl) and compare them to previously reported data for EtANaCr. High-pressure single-crystal X-ray diffraction and Raman data for EtAKCr show the occurrence of two high-pressure phase transitions observed at 0.75(16) and 2.4(2) GPa. The first phase transition involves strong compression and distortion of the KO 6 subnetwork followed by rearrangement of the -CH 2 CH 3 groups from the ethylammonium cations, while the second involves octahedral tilting to further reduce pore volume, accompanied by further configurational changes of the alkyl chains. Both transitions retain the ambient P 2 1 / n symmetry. We also correlate and discuss the influence of structural properties (distortion parameters, bulk modulus, tolerance factors, and compressibility) and parameters calculated by using density functional theory (vibrational entropy, site-projected phonon density of states, and hydrogen bonding energy) on the occurrence and properties of structural phase transitions observed in this class of metal formates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom