z-logo
open-access-imgOpen Access
Mechanistic Assessment of Functionalized Mesoporous Silica-Mediated Insulin Fibrillation
Author(s) -
Mohsen Akbarian,
Lobat Tayebi,
Soliman MohammadiSamani,
Fatemeh Farjadian
Publication year - 2020
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.9b10980
Subject(s) - fibrillation , fibril , chitosan , amino acid , mesoporous material , insulin , chemistry , kinetics , biophysics , hydrophobic effect , peptide , chemical engineering , crystallography , biochemistry , catalysis , biology , medicine , physics , quantum mechanics , engineering , endocrinology , atrial fibrillation
Insulin, which is a small protein hormone consisting of 51 amino acids, rapidly fibrillates under stressogenic conditions. This biotechnological/medical problematic reaction quickly accelerates in the presence of some particles, while there are several other particles that slow down the kinetic process. To address the unexplored demand of the particles that modulate protein fibrillation, we have synthesized two amino-based particles and a chitosan-coated mesoporous silica particle (MS-NH 2 , MS-3NH 2 , and MS-chitosan) to investigate insulin fibrillation. While these particles were fairly similar in size, they are differ in their net positive charge and surface hydrophobicity. To monitor the exact role of the hydrophobic interaction between the protein and MS-chitosan during the fibrillation, we have also co- and preincubated insulin with cholesterol and the particles under stressogenic conditions. The results indicate that MS-NH 2 and MS-3NH 2 , due to their high positive charges and lack of surface hydrophobicity, repel the positively charged unfolded insulins at pH 2.0. Moreover, MS-chitosan with 25% surface hydrophobicity stacks partially unfolded insulins to its surface and induces some α-helix to β-sheet structural transitions to the protein. Consequently, both amino- and chitosan-based particles slow down the kinetics of the fibrillation. We also showed that cholesterol can structurally participate in insulin fibril architecture as a hydrophobic bridge, and extraction of this molecule from the preformed fibrils may disrupt the fibril structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom