z-logo
open-access-imgOpen Access
Light-Driven Redox Activation of CO2- and H2-Activating Complexes in a Self-Assembled Triad
Author(s) -
Nathan T. La Porte,
Davis B. Moravec,
Richard D. Schaller,
Michael D. Hopkins
Publication year - 2019
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.9b07830
Subject(s) - photochemistry , triad (sociology) , rhenium , diimine , porphyrin , chemistry , redox , ultrafast laser spectroscopy , chromophore , acceptor , spectroscopy , catalysis , inorganic chemistry , organic chemistry , psychology , physics , quantum mechanics , psychoanalysis , condensed matter physics
We report a self-assembled triad for artificial photosynthesis composed of a chromophore, carbon-dioxide reduction catalyst, and hydrogen-oxidation complex, which is designed to operate without conventional sacrificial redox equivalents. Excitation of the zinc-porphyrin chromophore of the triad results in ultrafast charge transfer between a tungsten-alkylidyne donor and a rhenium diimine tricarbonyl acceptor, producing a charge-separated state that persists on the time scale of tens of nanoseconds and is thermodynamically capable of the primary dihydrogen and carbon dioxide binding steps for initiating the reverse water-gas shift reaction. The charge-transfer behavior of this system was probed using transient absorption spectroscopy in the visible, near-infrared, and mid-infrared spectral regions. The behavior of the triad was compared with that of the zinc-porphyrin-rhenium-diimide dyad; the triad was found to have a significantly longer charge-separated lifetime than other previously reported porphyrin-rhenium diimine compounds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom