Extent of Surface Force Additivity on Chemically Heterogeneous Substrates at Varied Orientations
Author(s) -
B. Shadrack Jabes,
D. Bratko,
Alenka Luzar
Publication year - 2017
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.7b10790
Subject(s) - additive function , polarizability , chemical physics , chemistry , context (archaeology) , london dispersion force , molecular dynamics , polar , surface (topology) , intermolecular force , aqueous solution , wetting , molecule , computational chemistry , materials science , van der waals force , physics , composite material , organic chemistry , geometry , mathematics , quantum mechanics , mathematical analysis , paleontology , biology
Surface interactions between chemically mixed surfaces, as well as those among dissolved biomolecules, comprise distinct contributions from polar and hydrophobic moieties. These contributions are often context dependent. Approximate compliance to the Cassie additivity equation for the wetting free energies on mixed surfaces in water is, however, indicative of similarly additive forces between individual surface elements, suggesting a quadratic interpolation model for total force from the forces between pure surfaces. We use molecular dynamics/umbrella sampling simulations of parallel and nonparallel mixed surfaces with demonstrable Cassie-like behavior to verify how well the total surface force between the heterogeneous, molecularly rough surfaces can be approximated as a combination of forces among the homogeneous ones. When accounting for dissimilar distances of approach between functional groups of different types, our results for graphene surfaces with mixed methyl and nitrile coating show such a superposition to provide a reasonable first order approximation of interactions between the platelets. Deviations from additivity are more prominent in parallel-plate configurations, at high content of hydrophobic groups, and small separations. The inclusion of water polarizability does not visibly alter the observed behavior regardless of platelet orientations. The outcome of this study determines the necessary molecular conditions for observing force additivity that emphasize the context dependence of hydrophobic interaction in the presence of polar groups. This notion provides guidelines for the syntheses of new, chemically heterogeneous materials with tailored function-oriented properties in aqueous media.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom