Parameter-Free Hydrogen-Bond Definition to Classify Protein Secondary Structure
Author(s) -
Hasti Haghighi,
Jonathan Higham,
Richard H. Henchman
Publication year - 2016
Publication title -
the journal of physical chemistry b
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/acs.jpcb.6b02571
Subject(s) - protein secondary structure , cutoff , hydrogen bond , molecule , series (stratigraphy) , statistical physics , chemistry , protein structure , generality , crystallography , computational chemistry , chemical physics , physics , mathematics , quantum mechanics , biology , psychology , paleontology , biochemistry , psychotherapist
DSSP is the most commonly used method to assign protein secondary structure. It is based on a hydrogen-bond definition with an energy cutoff. To assess whether hydrogen bonds defined in a parameter-free way may give more generality while preserving accuracy, we examine a series of hydrogen-bond definitions to assign secondary structure for a series of proteins. Assignment by the strongest-acceptor bifurcated definition with provision for unassigned donor hydrogens, termed the SABLE method, is found to match DSSP with 95% agreement. The small disagreement mainly occurs for helices, turns, and bends. While there is no absolute way to assign protein secondary structure, avoiding molecule-specific cutoff parameters should be advantageous in generalizing structure-assignment methods to any hydrogen-bonded system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom